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An attractive feature of variance-components methods (including the Haseman-Elston tests) for the detection of
quantitative-trait loci (QTL) is that these methods provide estimates of the QTL effect. However, estimates that
are obtained by commonly used methods can be biased for several reasons. Perhaps the largest source of bias is
the selection process. Generally, QTL effects are reported only at locations where statistically significant results are
obtained. This conditional reporting can lead to a marked upward bias. In this article, we demonstrate this bias
and show that its magnitude can be large. We then present a simple method-of-moments (MOM)–based procedure
to obtain more-accurate estimates, and we demonstrate its validity via Monte Carlo simulation. Finally, limitations
of the MOM approach are noted, and we discuss some alternative procedures that may also reduce bias.

Introduction

When the linkage of genetic markers to quantitative
traits is tested, two classes of tests are commonly used.
One class selects extremely concordant and/or extreme-
ly discordant pairs of relatives and tests for deviations
between the distribution of identity-by-descent (IBD)
scores and the distribution that was expected under the
null hypothesis (Risch and Zhang 1995, 1996). Another
class tests whether there is an association between the
number of alleles that a relative pair shares IBD and the
degree of phenotypic similarity for any given type of
biological relation. This latter class of tests includes sev-
eral least-squares implementations of the Haseman-Els-
ton (HE) test (e.g., see Haseman and Elston 1972; Elston
et al. 2000), maximum-likelihood (ML) testing (e.g., see
Hopper 1993; Amos 1994; Fulker and Cherny 1996),
and robust methods (e.g., see Guerra et al. 1999). If the
phenotypes are standardized to unit variance and if we
assume the recombination fraction between the marker
and the QTL to be zero, then each of these testing pro-
cedures involves the modeling of a parameter that di-
rectly estimates the proportion of variance that is ex-
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plained by the QTL. When the sample is randomly
ascertained—and, in some cases, when it has not been
randomly ascertained (Dolan et al. 1999)—it is possi-
ble to obtain nearly unbiased estimators of the QTL
effects. However, several factors in the common practice
of genome scanning can lead to marked biases in these
estimates.

One minor factor is that it is common practice to
constrain variance components to lie within their the-
oretical boundaries of 0.0 and 1.0 (when components
are expressed as a proportion of total variance). For
example, in the case of the second version of the HE
test (Elston et al. 2000), which we denote as “HE2,”
this would involve either setting the QTL-effect estimate
to 0.0 if the ordinary-least-squares (OLS) estimate of
the slope were !0.0 or, in case the phenotypes had been
standardized to unit variance before analysis, setting the
QTL-effect estimate to 1.0 if the OLS estimate of the
slope were 11.0. In the ML framework, this involves
the constraint of both the QTL variance and any other
variance components in the model to remain nonneg-
ative. This is analogous to the case of multiple regres-
sion, in which adjusted values must be allowed to2R
go below 0.0 to obtain unbiased estimation of the pop-
ulation , even though values theoretically cannot2 2R R
go below zero. Constraint of the estimates to lie within
their theoretical boundaries can lead to small upward
biases for true effects near the lower boundary and small
downward biases for true effects near the upper bound-
ary. However, such constraints usually lead to estimates
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with smaller mean-square errors (MSEs), which is de-
sirable (McCulloch and Searle 2000).

A second source of bias can be quite dramatic. It
involves the fact that QTL effects are generally esti-
mated or presented only when a significant result is
obtained. For example, in a genome scan by Pratley et
al. (1998), results are only reported for markers with
LOD scores �1.2. Given such selection, even if an es-
timator is completely unbiased when considered across
all markers tested, there will be marked upward biases
when estimation is performed or presented only at sig-
nificant loci. This bias has been demonstrated in the
literature on multiple testing in general (Thomas 1985)
and in the context of QTL detection in experimental
crosses (Beavis 1998; Kearsey and Farquhar 1998; Mel-
chinger et al. 1998; Utz et al. 2000) but has not been
studied in detail for QTL mapping in humans.

Similarly, in the context of a genome scan, when a
region is detected where there is a statistically significant
QTL effect, there may be several loci within the region
at which results are statistically significant. However,
the putative effect is generally presented only at the peak
(i.e., the point within the region where the evidence of
linkage is strongest), even though, in some cases, the
QTL may lie within the identified region but not at the
exact point of the peak. That is, not only do genetics
researchers tend to report only estimates that are sta-
tistically significant, but, within regions, they tend to
report only the largest of all significant results. This
selection process may exacerbate the problems of biased
estimation; however, we will not consider this issue spe-
cifically. Rather, for the sake of simplicity, we simulated
conditions in which only statistically significant results
are used to estimate a single QTL effect. Therefore, our
simulations have a conditional selection process similar
to that of a genome scan. Furthermore, any newly pro-
posed method needs to be analyzed under less restrictive
conditions before its performance can be evaluated un-
der more-complicated circumstances.

Using simulation, Beavis (1998) showed that QTL-
effect estimates obtained in genome scans with exper-
imental crosses are likely to be marked overestimates
for many realistic scenarios. (He also showed that the
number of true QTLs is often markedly underesti-
mated.) The degree of overestimation is inversely related
to the power of the study, with small QTL effects yield-
ing more-severe overestimation. However, he offered no
solution. Göring et al. (2001) provided an analytical
expression for this bias and demonstrated that the es-
timate of the QTL effect is essentially independent of
the true underlying QTL effect. However, they only pre-
sented studies from an ML-estimation approach, which
have certain distributional assumptions.

Here we show that this problem of overestimation
can also be of large magnitude in studies of QTL map-

ping in humans. We then consider potential solutions
and show how a method-of-moments (MOM) proce-
dure, which does not have stringent distributional as-
sumptions, can offer far more accurate and unbiased
estimation. The MOM procedure that we developed has
the advantage of conceptual simplicity and, at least in
certain cases, can be implemented retroactively, for pub-
lished genome scans, even in the absence of the raw
data. However, it also has certain disadvantages, and
we therefore discuss potential alternative approaches.

Methods

Notation and Terminology

In this article, we refer to the estimate of a QTL effect
from any method that tests and estimates each QTL
effect individually as a “preliminary estimate.” In ad-
dition, we will use the following notation:

p the proportion of variance in the phenotype ex-2jQTL

plained by the QTL under study (i.e., the effect to be
estimated);

p a preliminary estimator of ;2 2ĵ jQTL QTL

p a specific realization of the random variable2ĵQTL,obs

(i.e., the value that one observes in one’s2 2ˆ ˆj jQTL QTL

sample for a specific locus);
a p the prespecified level (test size) for the probability

of a type I error;
P p the observed probability value from the statistical

test of the QTL effect.

Statistical Test

In this article, we demonstrate both the problem and
the MOM approach by use of HE2 (Elston et al. 2000).
Although we illustrate the MOM approach by use of
HE2 applied to independent sibling pairs, an important
advantage of this approach is that it is easily generalized
to other preliminary methods of QTL estimation and
other pedigree structures. Denoting the phenotypes of
the first and second siblings in the jth sibling pair as
“ ” and “ ,” respectively, and the proportion of al-Y Y1,j 2,j

leles that the pair shares IBD as “pj,” Elston et al. (2000)
developed HE2, a least-squares implementation of a
variance-components test in the style of the implemen-
tations proposed by Amos (1994) and, subsequently,
Fulker and Cherny (1996). In this test, we fit the re-
gression equation

¯ ¯(Y � Y)(Y � Y) p g � bp � e , (1)1,j 2,j j j

where is the sample mean of Y for the first and secondȲ
siblings combined—that is, . It is¯ 2 nY p (� � Y ) /2nip1 jp1 i,j

assumed that siblings are ordered randomly within pairs.
We test the significance of the estimate of b with a one-
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tailed test in which only positive b values are considered
to be indicative of linkage. Given random sampling and
complete linkage, the expectation of the sample estimate
of b is —that is, , and, therefore, in the2 2ˆj E(b) p jQTL QTL

context of HE2, .2 ˆĵ { bQTL

The MOM Approach

The MOM approach is among the simplest and earliest
of general methods for the derivation of estimators of
population parameters. In brief, if a distribution function
involves a parameter of interest, one finds a population
moment that is a function of the parameter, equates the
sample estimate of that moment to the function, and then
solves for the parameters (Mood 1950; Ross 1987). This
method is limited only by the ability to derive and to solve
the functions. However, computer simulation makes this
a tractable task, even in complex situations (Pakes and
Pollard 1989; Gallant and Tauchen 1999). An advantage
of MOM estimators is that, unlike ML estimators, they
do not require assumptions about the higher-order mo-
ments of data. Therefore, MOM estimates are free from
distributional assumptions about the data.

Because, in the context of the genome scan, we usually
present only significant results, we are sampling from a
truncated distribution of . The MOM procedure2ĵQTL

identifies the truncated distribution of , which is de-2ĵQTL

termined by the underlying genetic model such that
. In essence, by using the2 2 2ˆ ˆE(j Fj ,P ! a) p jQTL QTL QTL,obs

MOM procedure, we are asking, “What value has2jQTL

an expected QTL estimate of among only those2ĵQTL,obs

results that are statistically significant?” We then use that
value as the MOM estimate of . To determine the2jQTL

truncated distribution of , many features of the un-2ĵQTL

derlying genetic model may be specified, including
, mode of inheritance, and allele frequency, as well2jQTL

as the sampling scheme, the sample size, and the prelim-
inary estimation procedure used. Therefore, additional
assumptions about the value are not necessary to2jQTL

perform this analysis. For this reason, if the genetic
model is complex and includes several unlinked loci,
then we will still obtain unbiased estimates of , ow-2jQTL

ing to the flexibility of the MOM procedure
In some cases, it will be feasible to analytically derive

a function to answer this question. For example, in the
case of HE2, the sampling distribution of is asymp-b̂

totically normal, and formulae for the expected value of
a truncated normal are well established (e.g., see Cohen
1949). However, in virtually all cases, it will be possible
to simulate (i.e., the expected2 2 2ˆ ˆE(j Fj ,P ! a) jQTL QTL QTL

value given an assumed value and given that the2jQTL

observed P value is less than the a level). Such simulations
can accommodate any specifiable sampling scheme—as
well as any phenotypic distribution, any genetic model,
and any preliminary estimation procedure—whereas

the derivation of analytic expressions for expected
values under truncation in all of these situations may
be impractical. One can simulate data under an ex-
haustive range of values for until one obtains the2jQTL

value that empirically minimizes the quantity2jQTL

, a function of . By2 2 2 2ˆ ˆFj � E(j Fj ,P ! a)F jQTL,obs QTL QTL QTL

drawing on simulation, the method, although some-
what computationally demanding, is adaptable to vir-
tually any sampling scheme, any pedigree structure,
and any initial method of testing and estimating .2jQTL

Hence, this should not be limited to HE testing, sibling
pairs, or random sampling. Yet, for convenience, we
focus on these conditions in the current study.

Simulation Parameters and Methods

Several simulation experiments were run. In each ex-
periment, we evaluated both the bias and the MSE of
all estimators considered. Bias was estimated as the av-
erage of the signed differences between the parameter
and its estimator. MSE was estimated as the average of
the squared differences between the parameter and its
estimator. We simulated QTLs with effects expressed by

values from 0.0 (i.e., no linkage) to 0.99 of the2jQTL

phenotypic variance at increments of 0.01. Note that we
do not claim that true QTL effects 10.75 are particularly
plausible, but we include them for completeness. Thus,
a total of 100 genetic models were used. The residual
(within-genotype) distribution was assumed to be nor-
mal, and the sibling correlation conditional on genotype
(i.e., the residual correlation) was set to zero. Thus, all
variance in our simulation is due to major genetic or
nongenetic nonshared sources. Each simulated data set
consisted of 200 sibling pairs from independent families.
Again, these conditions were selected to evaluate MOM-
estimation procedures under simple conditions before
more-complex issues could be addressed.

Although the genome-scan context is of interest and
is slightly more complex, we simulated data at only a
single locus. This is because, for QTLs located at un-
linked loci, the QTL effects will be uncorrelated, and,
therefore, the process that we simulated at a single point
would only be replicated at multiple points. That is, for
QTLs at unlinked loci, the simulation of a whole-genome
scan would be just “more of the same.” For multiple
true QTLs within a linkage group, there are substantial
unsolved problems with estimation that go far beyond
the truncation process we are considering herein, and,
thus, such a situation is beyond the scope of this paper.
For a single true QTL within a linkage group with QTL
effects that are estimated at each point within the linkage
group, estimates would be expected to be correlated. The
process of selecting the highest point within a region for
which there is a significant QTL effect to be the point
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Figure 1 Estimated versus true QTL effects, without selection
of only significant results. All analyses included 200 independent sib-
ling pairs and used HE2 to provide the QTL estimates.

at which one estimates that QTL effect should increase
still further the bias that is herein demonstrated.

In experiment 1, QTL effects were estimated for all
data sets, regardless of their significance. In this simu-
lation, 1,000 data sets were generated for each genetic
model. In the situation of no selection on the basis of
significance, the HE2 procedure was expected to pro-
duce approximately unbiased estimates of QTL effects
for true effects ∼0.50 and small upward and downward
biases for true QTL effects near zero and one, respec-
tively. Thus, this experiment plays a primarily illustrative
role.

In experiment 2, data sets were generated, and we
concluded that we had identified a QTL if the associated
P value from the HE2 test was !.01 (i.e., if the LOD
score was �1.2). We generated sample data sets until
1,000 data sets with statistically significant results were
generated. The a level of 0.01 (rather than a more strin-
gent level) was used, to minimize the simulation time.
The QTL-effect estimates from these 1,000 data sets
were then used to illustrate the bias that ordinary esti-
mation have when only significant data sets are selected.
This conditional use of only statistically significant re-
sults is similar to the selection process that is often used
in genome scans in which the researchers declare linkage
for a region (or regions) where the LOD score exceeds
some predefined critical value.

These same data were then used to illustrate the MOM
approach. Specifically, for each data set generated, a
MOM estimate of the QTL effect, , was obtained by2ĵQTL

(a) the examination of all 100,000 simulated data sets
(i.e., 1,000 data sets for each QTL value from 0.00 to
0.99) and (b) the selection of the value that empir-2jQTL

ically minimizes the quantity ,2ˆ ˆFb � E(bFj ,P ! a)Fobs QTL

which is a function of .2jQTL

In experiment 3, a fresh set of 1,000 significant results
for each genetic model were generated as in experiment
2, and we computed the MOM estimates by use of the

values that were obtained in experiment2ˆE(bFj ,P ! a)QTL

2. This was done both to check that the apparently de-
sirable performance of the MOM estimators in experi-
ment 2 was not merely due to simulation that was con-
ditional on the specific data from each replicate and to
ensure that experiment 4 would be meaningful.

In experiment 4, we address the problem in which the
investigator may not know either the true mode of in-
heritance or the allele frequency when the simulations
to estimate are conducted. Here we gen-2ˆE(bFj ,P ! a)QTL

erated 1,000 data sets with statistically significant results
for each value from 0.0 to 0.99 in increments of2jQTL

0.01. This was done for each of three combinations of
modes of inheritance and allele frequencies:

Model A. The increasor allele acts dominantly, and
the allele frequency is 0.5;

Model B. The increasor allele acts recessively, and
the allele frequency is 0.1;

Model C. The increasor allele acts recessively, and
the allele frequency is 0.9.

For these models, the proportions of that were at-2jQTL

tributable to the additive variance (Liu 1998) were 0.67,
0.18, and 0.95, respectively. The MOM estimator was
then applied, but with the values that2ˆE(bFj ,P ! a)QTL

were derived in experiment 2 by the additive model. This
study was performed to determine how much the bias
and the MSE of the MOM estimator would be increased
by use of a “default,” but incorrect, genetic model.

Results

Experiment 1: No Selection

One thousand data sets were generated, and the QTL
effects were estimated in the usual way—that is, by using

from equation (1) and by setting values !0.0 and 11.0b̂

to 0.0 and 1.0, respectively. Results are plotted in figure
1 and are presented, with further details, in table 1. As
can be seen, we obtain the expected relatively minor
upward biases in the estimates for QTL effects !0.50
and relatively minor downward biases in the estimates
for QTL effects 10.50. It should be noted that the bias
near the endpoints (0.0 and 1.0) is larger than expected,
owing to the fixing of the minimum and maximum val-
ues at 0.0 and 1.0, respectively.

Experiment 2: Selection of Only Significant Results

Data sets were generated until 1,000 data sets with
statistically significant values were obtained. Results are
plotted in figure 2. As can be seen, among results selected
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Figure 2 Estimated versus true QTL effects, with selection of
only significant results. All analyses included 200 independent sibling
pairs and used HE2 as the preliminary test with a one-tailed a level
of 0.01.

Table 1

Results for the Additive Model with No Selection/Random Sampling (Experiment 1) or
Only Significant Results Selected (Experiment 3)

2jQTL

ONLY SIGNIFICANT RESULTS

NO SELECTION/
RANDOM SAMPLING Ordinary Estimator MOM Estimator

Mean b̂ Bias MSE Mean b̂ Bias MSE
2ĵQTL,MOM Bias MSE

.00 .08 .08 .02 .52 .52 .28 .05 .05 .01

.01 .09 .08 .02 .53 .52 .27 .05 .04 .01

.05 .11 .06 .03 .56 .51 .27 .08 .03 .02

.10 .14 .04 .03 .59 .49 .25 .11 .01 .02

.15 .19 .04 .04 .62 .47 .23 .16 .01 .03

.20 .21 .01 .04 .66 .46 .22 .22 .02 .04

.25 .26 .01 .05 .69 .44 .21 .27 .02 .04

.30 .32 .02 .05 .72 .42 .19 .31 .01 .05

.35 .35 .00 .06 .75 .40 .17 .37 .02 .06

.40 .40 .00 .06 .77 .37 .16 .42 .02 .07

.45 .45 .00 .08 .81 .36 .15 .50 .05 .08

.50 .50 .00 .08 .83 .33 .13 .55 .05 .08

.55 .54 �.01 .08 .86 .31 .11 .61 .06 .08

.60 .59 �.01 .08 .89 .29 .09 .67 .07 .08

.65 .62 �.03 .09 .91 .26 .08 .72 .07 .08

.70 .66 �.04 .08 .93 .23 .06 .77 .07 .07

.75 .70 �.05 .07 .94 .19 .04 .81 .06 .06

.80 .71 �.09 .08 .95 .15 .03 .84 .04 .05

.85 .75 �.10 .08 .96 .11 .02 .87 .02 .04

.90 .79 �.11 .07 .97 .07 .01 .91 .01 .03

.95 .81 �.14 .08 .98 .03 .00 .93 �.02 .02

.99 .83 �.16 .08 .99 .00 .00 .94 �.05 .02

for significance, even when there is a true QTL effect,
such an effect is substantially overestimated by un-b̂

less the true QTL effect is unrealistically high (i.e.,
). In contrast, when the MOM estimator is2j 1 0.90QTL

used, the biases are nearly eliminated for virtually all
values of as portrayed in figure 3. Not only is the2jQTL

bias reduced but the MSE associated with the MOM
estimator also is significantly lower than that of the pre-
liminary (ordinary) estimator. Therefore, the MOM ap-
proach provides not only an unbiased estimate but also
a more consistent estimate. Furthermore, we investigated
the use of the median of the MOM estimate, to examine
bias in parameter estimation. Owing to the truncation
of the distribution of significant results, the median es-
timates were lower than the mean estimates, which in
turn yields less conservative MOM estimates. That is,
MOM estimates based on the median (which is a quan-
tile, not a moment) would not fully reduce the bias that
is under consideration herein.

Experiment 3: Independent Check on Experiment 2

A fresh set of 1,000 data sets with statistically signif-
icant values of were generated for each genetic model.b̂

The MOM estimates were computed by use of the
values obtained in experiment 2 to2ˆE(bFj ,P ! a)QTL

check that the apparently desirable performance of the

MOM estimators that we used (as shown in fig. 3) was
not an artifact of the sample statistic to the population
parameter function being derived from the same data to
which the MOM-estimation procedure was applied. The
results of experiment 3 are plotted in figure 4 and shown,
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Figure 3 MOM estimates of QTL effect versus true QTL effect,
with selection of only significant results from experiment 2. All anal-
yses included 200 independent sibling pairs and used HE2 as the pre-
liminary test with a one-tailed a level of 0.01.

Figure 4 MOM estimates of QTL effect versus true QTL effect,
with selection of only significant results from experiment 3. All anal-
yses included 200 independent sibling pairs and used HE2 as the pre-
liminary test with a one-tailed a level of 0.01.

for selected values, in table 1. As can be seen, the2jQTL

results shown in figures 3 and 4 are virtually identical,
indicating that the excellent performance of the MOM
estimators that was observed in experiment 2 was not
an artifact. As shown in table 1, for all values 10.95,2jQTL

the MOM estimator dramatically reduces bias. Equally
important, for all values less than the perhaps im-2jQTL

plausibly large 0.65, the MOM estimator dramatically
reduces the MSE of the QTL estimate.

Experiment 4: Effects of Assuming Incorrect Model

We used four different nonadditive models to evaluate
the extent to which having based the MOM estimator
on an incorrect default genetic model (i.e., additivity
with an allele frequency of 0.5) affected the bias and/or
the MSE of the MOM estimator. In terms of bias, results
are displayed graphically in figure 5, and more details
are given for both bias and MSE in table 2, for values
of in increments of 0.05. As can be seen, although2jQTL

the MOM estimator (table 3) markedly reduces the bias
in QTL estimation in these cases, the degree of reduction
is far from complete and is significantly less than that
observed in the case in which the true model is additive.
This incomplete reduction occurs because the selection-
induced bias decreases monotonically with increasing
power and because power is affected by variables such
as the proportion of the QTL variance that is nonad-
ditive variance, the allele frequency, and the mode of
inheritance. Thus, depending on one’s perspective, one
could adopt various principles. The adoption of an ad-
ditive model with an allele frequency of 0.5 should lead
to liberal MOM estimates (i.e., probably biased high)
that do not overcorrect the selection bias. In contrast,

the adoption of a recessive model with a very low allele
frequency should lead to conservative MOM estimates
(i.e., possibly biased low) that do not undercorrect the
selection bias.

Example

As an example, consider the study of human obesity
by Walder et al. (2000). Walder et al. conducted a
genome scan for linkage analysis by use of both the
original HE method, which we denote as “HE1,” and
a maximum-likelihood variance-components (MLVC)
approach among 1,199 sibling pairs from 239 families
and considered any findings with LOD scores 11.2
(corresponding to a one-tailed P value of .00937) as
significant. They detected a LOD score of 2.1 with
the MLVC approach when using serum leptin level as
the phenotype and estimated the QTL effect to account
for 22% of the phenotypic variance. It is noteworthy
that Walder et al. estimated the total additive herita-
bility for this trait to be only 21%. That the QTL effect
accounts for essentially all of the heritable variance
strongly suggests the possibility of overestimation.

Additional information regarding this example was
provided by R. L. Hanson (personal communication).
Specifically, the pairwise sibling-sibling correlation for
leptin was 0.10. Expressing the phenotype in unit var-
iance, the slope of the HE1 regression was �0.80 at the
point where the QTL effect was estimated, which means
that the preliminary estimate of the QTL effect from
the HE procedure is ∼0.40 (i.e., �0.80/�2). The total
variance of the squared sibling-pair differences was
5.979, and the HE1 test had 495 df after adjustment
to account for nonindependent pairs. Of course, it is
impossible for us to simulate Walder et al.’s (2000) exact
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Figure 5 Simulations with nonadditive models, but with MOM estimates calculated assuming additivity. Note that the true QTL effects,
as well as the preliminary (ordinary) estimates, include both the additive component and the dominance component. All analyses included 200
independent sibling pairs and used HE2 as the preliminary test with a one-tailed a level of 0.01. For details of nonadditive models, see the
“Simulation Parameters and Methods” subsection.

situation (i.e., exact distribution of sibship sizes, exact
phenotypic distribution, etc.) without access to the raw
data. However, using only the information provided,
we can still conduct a reasonable simulation to get a
sense of what a more accurate QTL estimate might be
in this case. To do so, we simulated data sets consisting
of 497 sibling pairs (495 df � 2) from a population
with a phenotypic sibling correlation of 0.10. For each

value from 0.00 to 0.20, we simulated data under2jQTL

an additive model until 1,000 significant results were
obtained, using the HE1 test (Haseman and Elston
1972). (The upper bound was set at 0.20, because, un-
der complete additivity, the maximum QTL effect pos-
sible is twice the sibling correlation.) The threshold for
significance was set at (one tailed). Fora p 0.00937
each value from 0.00 to 0.40, we also simulated2jQTL

data under a recessive model with an allele frequency
of 0.10, until 1,000 significant results were obtained.
(The upper bound was set at 0.40, because, under com-
plete nonadditivity, the maximum QTL effect possible
is four times the sibling correlation.) Using the data
obtained, we found the values for which the ex-2jQTL

pected value of the slope under the HE1 test is �0.80.
Interestingly, for both the additive model and the re-
cessive model, the MOM estimate was 0.00. To find a
range of plausible values for the QTL effect, 95% con-
fidence intervals that contained �0.80 were con-
structed. The QTL value that had �0.80 as the 5th
percentile of its sampling distribution of slopes (i.e.,
minimum plausible value of the confidence interval) was
0.04 for the additive model (0.03 for the recessive
model). This suggests that estimates of the proportion

of variance in leptin levels, attributed to the locus de-
tected by Walder et al., between 0 and 0.04 may be
more-reasonable estimates than are the estimates of
0.21 by the ML method and 0.40 by the HE method.
Although it seems odd that the MOM estimate of a
significant locus is nearly zero, unbiased estimators can
sometimes produce odd estimates for specific cases.
Again, we use the example of adjusted , which is an2R
unbiased estimator of the population but occasion-2R
ally takes on negative values for specific cases. In those
cases, although the estimate of cannot be correct,2R
the use of adjusted guarantees that, over the course2R
of many studies, the estimate will be right on average.
Similarly, we cannot say with certainty that the QTL
effect in the population that was sampled in this study
is between 0 and 0.04. Rather, we can say that, if many
studies are done and if we estimate QTL effects in this
way, then we will be right on average. In a larger study,
the MOM adjustment would be smaller than that which
we found in this situation. Thus, this particular example
shows the effect that a small sample size can have on
the bias estimation when only significant results are pre-
sented (Beavis 1998).

Discussion

Advantages and Disadvantages of the MOM Approach

Although our simulation studies were presented when
only a single position was considered, they are relevant
to genome scans. In a genome scan, one searches for
genetic effects over intervals and declares linkage for a
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Table 2

Results for the Nonadditive Models (Experiment 4) with Only Significant Results Selected
and Ordinary Estimator Used

2jQTL

MODEL A MODEL B MODEL C

Mean b̂ Bias MSE Mean b̂ Bias MSE Mean b̂ Bias MSE

.00 .52 .52 .28 .52 .52 .28 .52 .52 .52

.01 .53 .52 .27 .52 .51 .27 .53 .52 .52

.05 .56 .51 .26 .59 .54 .30 .56 .51 .51

.10 .59 .49 .25 .71 .61 .40 .59 .49 .49

.15 .62 .47 .23 .81 .66 .46 .64 .49 .49

.20 .67 .47 .23 .87 .67 .48 .66 .46 .46

.25 .69 .44 .20 .90 .65 .45 .69 .44 .44

.30 .73 .43 .20 .90 .60 .40 .74 .44 .44

.35 .75 .40 .18 .90 .55 .34 .77 .42 .42

.40 .79 .39 .17 .92 .52 .29 .80 .40 .40

.45 .82 .37 .15 .91 .46 .24 .83 .38 .38

.50 .85 .35 .14 .92 .42 .20 .87 .37 .37

.55 .88 .33 .12 .92 .37 .16 .89 .34 .34

.60 .91 .31 .10 .91 .31 .13 .91 .31 .31

.65 .92 .27 .08 .93 .28 .10 .94 .29 .29

.70 .93 .23 .06 .92 .22 .07 .96 .26 .26

.75 .95 .20 .05 .91 .16 .05 .97 .22 .22

.80 .96 .16 .03 .92 .12 .04 .98 .18 .18

.85 .97 .12 .02 .92 .07 .03 .98 .13 .13

.90 .98 .08 .01 .93 .03 .02 .99 .09 .09

.95 .99 .04 .00 .93 �.02 .02 .99 .04 .04

.99 .99 .00 .00 .93 �.06 .03 1.00 .01 .01

NOTE.—For details of nonadditive models, see “Simulation Parameters and Methods”
subsection.

region (or regions) for which the LOD score exceeds
some predefined critical value. If QTL effects are eval-
uated across multiple chromosomes and different link-
age groups, then estimated effects should be indepen-
dent. Thus, for these situations, the problem of truncated
estimation is just a recapitulation of the same problem.
That is, we have multiple independent areas in which
we are conducting tests and then generating estimates
only when the tests are significant. Each independent
area simply recapitulates the process we have simulated
herein. Within linkage groups, QTL-effect estimates will
be correlated. Here the general practice is to simply pro-
vide the estimate at the point where the evidence is max-
imal. As mentioned above, this may further exacerbate
the biasing effects of the truncation process. In theory,
this could be added to the MOM-estimation process that
we have illustrated; however, we have not done so at
this time.

The MOM approach that we have described has cer-
tain advantages. First, it is conceptually very simple. Sec-
ond, by relying on simulation, it offers great flexibility
(Pakes and Pollard 1989; Gallant and Tauchen 1999).
Although it is possible to analytically derive the MOM
estimators in some situations, we chose not to, in part,
to preserve this flexibility. Thus, it was easy for us to
switch from our initial simulations with HE2 to the ex-
ample that we considered that used the HE1 test. The

MOM-simulation approach allows adaptation to any
pedigree structure, any sampling scheme, and any test
statistic, as long as that pedigree structure, that sampling
scheme, and that test statistic are incorporated in the
simulation. Moreover, although we used a normal dis-
tribution for the within-genotype phenotypic distribu-
tion in our simulations, investigators faced with non-
normal data could adapt the simulation phase of the
MOM estimation process to accommodate the nonnor-
mality (although in many situations a normalizing trans-
formation of the observed phenotypic data prior to anal-
ysis may be preferable). By use of the generalized l

distribution described by Karian and Dudewicz (2000),
it is possible to simulate nonnormal data to accommo-
date almost any observed distribution. Third, as we have
illustrated, the MOM approach has the potential to es-
sentially eliminate the bias that is imposed by the selec-
tion of only significant results for estimation. Although
this requires further empirical investigation, the results
of this study are promising in that the MOM estimation
procedure is flexible, and thus, its ability to reduce bias
could be generalized to more complex conditions.

However, the MOM approach also has some dis-
advantages. First, if one implements the MOM ap-
proach by relying on simulation, the computational de-
mand can be high. This is because, at the low power
levels that occur with small sample sizes and low QTL
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Table 3

Results for the Nonadditive Models (Experiment 4) with Only Significant Results Selected
and MOM Estimator Used

2jQTL

MODEL A MODEL B MODEL C

2ĵQTL,MOM Bias MSE
2ĵQTL,MOM Bias MSE

2ĵQTL,MOM Bias MSE

.00 .05 .05 .01 .05 .05 .01 .05 .05 .01

.01 .05 .04 .01 .05 .04 .01 .05 .04 .01

.05 .07 .02 .01 .12 .07 .03 .08 .03 .01

.10 .11 .01 .02 .34 .24 .15 .12 .02 .02

.15 .16 .01 .03 .53 .38 .27 .18 .03 .03

.20 .23 .03 .04 .69 .49 .39 .22 .02 .04

.25 .26 .01 .04 .76 .51 .40 .27 .02 .04

.30 .33 .03 .06 .78 .48 .36 .34 .04 .05

.35 .38 .03 .06 .78 .43 .32 .41 .06 .07

.40 .46 .06 .08 .81 .41 .29 .47 .07 .08

.45 .51 .06 .08 .80 .35 .25 .54 .09 .09

.50 .59 .09 .09 .81 .31 .22 .62 .12 .09

.55 .64 .09 .09 .80 .25 .19 .68 .13 .09

.60 .71 .11 .08 .80 .20 .17 .72 .12 .08

.65 .75 .10 .08 .83 .18 .14 .79 .14 .08

.70 .79 .09 .06 .82 .12 .13 .85 .15 .07

.75 .84 .09 .06 .80 .05 .13 .88 .13 .05

.80 .87 .07 .04 .82 .02 .11 .91 .11 .04

.85 .90 .05 .03 .81 �.04 .12 .93 .08 .03

.90 .93 .03 .02 .82 �.08 .11 .95 .05 .02

.95 .95 .00 .01 .83 �.12 .12 .96 .01 .01

.99 .96 �.03 .01 .83 �.16 .13 .97 �.02 .01

levels, one must generate and test many samples to
obtain a sufficient number (e.g., 1,000) that yield sta-
tistically significant QTL estimates. Second, because
every study is different, implementation may require
rewriting simulation code or rederiving analytic for-
mulae for if an analytical approach2 2ˆE(j Fj ,P ! a)QTL QTL

is used. Third, to derive , one must2 2ˆE(j Fj ,P ! a)QTL QTL

first assume some underlying model, and, as we saw in
experiment 4 above, the assumption of the incorrect
model can lead to biased estimates. In certain estimation
procedures, it is common practice to report only the
additive component of variance in genome scans, which
suggests that, in these cases, the MOM procedure with
an additive assumption may be applied to most of the
results that are presented. The results of the current study
show that, even if an incorrect model is assumed, then
the MOM approach still yields less-biased estimates.
However, one could also apply the MOM approach to
study both additive and dominance components to min-
imize model assumptions. Fourth, it is somewhat unclear
how to place confidence intervals around the MOM
estimates. One could use bootstrap methods (Chernick
1999), but this requires further computation to ensure
enough replicates to provide a reliable coverage interval.
Fifth, MOM estimators are less efficient than some com-
peting estimators (Stuart et al. 1999). Göring et al.
(2001) presented studies from an ML-estimation ap-
proach that is efficient when distributional assumptions

are met. However, when these distributional assump-
tions are not tenable, this ML method may be more
biased than the proposed MOM method, which does
not necessarily require distributional assumptions. Fi-
nally, as seen in the example above, the MOM approach
can potentially leave one in the curious position of hav-
ing declared a QTL effect to be statistically significant
on that basis of the P value and then having stated that
the best estimate of the effect, based on the MOM ap-
proach, is zero. Despite some shortcomings, the MOM
approach has the advantage of being easy to implement
and being robust to distributional assumptions.

Potential Alternatives to the MOM Approach

Because the MOM approach may not be fully efficient
in some cases, we discuss two alternative procedures.
The first alternative involves simultaneous ML estima-
tion of all QTL effects in a genome scan. For linkage
analysis, one approach to estimation and inference that
explicitly acknowledges that individual locus effects are
estimated in the context of a genome scan consists of
the joint modeling of effects from two or more loci that
are initially determined to be significant on the basis of
a genome scan that first considers each locus separately
(e.g., see Blangero and Almasy 1997; Almasy and Blan-
gero 1998). This approach may be expected to reduce
the upward biases in the effect sizes but may not elim-
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inate it, because one would still be providing estimates
only for significant QTL. An approach that might, the-
oretically, provide better estimates than this would
jointly model the effects of all loci (whether significant
or not) simultaneously. Such simultaneous estimation
would presumably impose (a) severe constraints on the
magnitude that any one QTL-effect estimate could take
and/or (b) severe limitations on the number of loci that
could be estimated not to have extremely small effects.
Rather than requiring that the sum (in terms of pro-
portion of phenotypic variance explained) not exceed
1.0, one can impose even-more-severe constraints on the
estimates by requiring that the sum not exceed four times
the sibling correlation. The upper bound was set at 0.40,
because, under complete nonadditivity, the maximum
QTL effect possible is four times the sibling correlation
(see the “Example” section). However, finite sample sizes
and computational resources may make the literal mod-
eling of all QTL effects simultaneously impractical.
Thus, it may be important to combine this approach
with model-selection techniques such as, for example,
those illustrated by Li and Nyholt (2001) in a related
context.

A second alternative is the use of empirical Bayes
approaches (Morris 1983; Carlin and Louis 2000a,
2000b). The empirical Bayes approach permits the joint
incorporation of results from the entire genome scan,
to allow the investigator to assign a prior distribution
of QTL-effect sizes throughout the genome. This ap-
proach would have the effect of smoothing the results
from the genome scan and so reduce upward bias in
QTL-effect estimates at the regions most strongly sug-
gestive of linkage.

Until recently, most methodological efforts addressing
linkage analysis for quantitative traits were directed at
simply detecting effects and minimizing type 1 and type
2 errors. Less attention has been devoted to the esti-
mation of effects, perhaps because there were rather few
convincingly significant effects. However, the relative
dearth of estimates is changing. For example, in the field
of obesity, in which phenotypes such as fatness are in-
herently quantitative, compelling linkages have begun to
be found (e.g., see Comuzzie et al. 1997; Kissebah et al.
2000), and QTL-effect estimates are beginning to be
provided in obesity, as well as in other areas (e.g., see
Zhu et al. 1999; Walder et al. 2000). Estimates of effect
sizes can be useful in the prioritization of linkages, to
follow up replication studies or fine-mapping; in the con-
ducting of power analyses for future studies; in the eval-
uation of the public health magnitude of genetic varia-
tion at the putative QTL; and in the evaluation of the
potential predictive power of the gene, once identified,
for the detection of people who are at risk. For all of
these endeavors, the MOM estimator and, perhaps,
other possible alternatives offer more-accurate estimates

than estimates that do not take into account the bias
imposed by the estimation of effect sizes only for sig-
nificant linkages. As a progressively greater number of
compelling QTL linkages are detected, QTL-effect es-
timation will become increasingly important. We hope
that this article is a useful aid toward that end.
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